Pattern Recognition and Machine Learning

Pattern Recognition and Machine Learning

Description

This is the first textbook on pattern recognition to present the Bayesian viewpoint. The book presents approximate inference algorithms that permit fast approximate answers in situations where exact answers are not feasible. It uses graphical models to describe probability distributions when no other books apply graphical models to machine learning. No previous knowledge of pattern recognition or machine learning concepts is assumed. Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.

Similar Books

ISBN 10: 0387848576
ISBN 13: 9780387848570

21 Apr 2017
Trevor Hastie

ISBN 10: 1848829345
ISBN 13: 9781848829343

18 Jan 2011
Richard Szeliski

ISBN 10: 1439840954
ISBN 13: 9781439840955

07 Nov 2013
Andrew Gelman

ISBN 10: 0262039249
ISBN 13: 9780262039246

13 Nov 2018
Richard S. Sutton

ISBN 10: 0262035618
ISBN 13: 9780262035613

18 Apr 2017
Ian Goodfellow

ISBN 10: 1492032646
ISBN 13: 9781492032649

22 Oct 2019
Aurelien Geron

ISBN 10: 0262018020
ISBN 13: 9780262018029

18 Oct 2016
Kevin P. Murphy

ISBN 10: 0521642981
ISBN 13: 9780521642989

05 Apr 2006
David J. C. MacKay

ISBN 10: 1292153962
ISBN 13: 9781292153964

28 Nov 2018
Stuart Russell

ISBN 10: 1107149894
ISBN 13: 9781107149892

15 Feb 2019
Bradley Efron

ISBN 10: 1461471370
ISBN 13: 9781461471370

01 Sep 2017
Gareth James

ISBN 10: 0387402721
ISBN 13: 9780387402727

24 May 2005
Larry Wasserman